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Gravity with broken diffeomorphisms

• Modified gravity theories have been studied for solving dark energy 
problem

• Unimodular gravity is an example of theory that breaks diffeomorphisms 
invariance, and is proposed as a solution to the vacuum energy problem 

• We explore general modifications to the gravitational action that breaks 
Diff invariance and study the cosmological implications
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• Most general global Lorentz invariant action, up to two metric 
derivatives is
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• Most general global Lorentz invariant action, up to two metric 
derivatives is

• Einstein-Hilbert action is a particular Diff case of these theories
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• We recover Einstein linearized gravity for EH and two additional cases,

• EH + ℒ4 : 𝑎1 = −𝑎2 = −1, and 𝑎3 = 𝑎5 = 0 but 𝑎4 ≠ 0

• EH + ℒ5 : 𝑎1 = −𝑎2 = −1, and 𝑎3 = 𝑎4 = 0 but 𝑎5 ≠ 0
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• We recover Einstein linearized gravity for EH and two additional cases,

• EH + ℒ4 : 𝑎1 = −𝑎2 = −1, and 𝑎3 = 𝑎5 = 0 but 𝑎4 ≠ 0

• EH + ℒ5 : 𝑎1 = −𝑎2 = −1, and 𝑎3 = 𝑎4 = 0 but 𝑎5 ≠ 0

• At quadratic order, ℒ4 produces vector instabilities or ghosts

• EH + ℒ4 : 𝑎1 = −𝑎2 = −1, and 𝑎3 = 𝑎5 = 0 but 𝑎4 ≠ 0

• ℒ5 is free of ghosts if 𝑎5 > 0, and propagates a decoupled scalar 
graviton

4

John F. Donoghue, U. Aydemir, M. Amber (2009)

arXiv: 0911.4123

E. Álvarez, D. Blas, 

J. Garriga, E. Verdaguer (2006)

arXiv: hep-th / 0606019

𝑎𝑖 = 𝑓𝑖(𝑔 = 1)

E. Álvarez, D. Blas, 

J. Garriga, E. Verdaguer (2006)

arXiv: hep-th / 0606019



• Stable model compatible with Newtonian tests
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• Stable model compatible with Newtonian tests

• If we impose that EH sector is Diff, PPN parameters agree with GR

• For simplicity we consider 𝑓5 𝑔 = 𝑎5 𝑔
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• To summarize, the action we will use 
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• To summarize, the action we will use 

• This action is invariant under tranverse diffeomorphisms (TDiff)  𝜕𝜇𝜉𝜇 = 0

• Compatible with linearized and post-newtonian GR

• Free of ghosts, instabilities and fifth-force interactions even considering 
radiative corrections
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• Varying the action with respect to the metric give us the equations of 
motion
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• Varying the action with respect to the metric give us the equations of 
motion

• Under solutions of the modified Einstein equations, the TDiff tensor is 
conserved
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Cosmological solutions
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Cosmological solutions
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• The TDiff piece has the form 

• Most general flat FLRW spacetime
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• ∇𝜇𝑇𝜇𝜈 = 0 has the same form
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• ∇𝜇𝑇𝜇𝜈 = 0 has the same form

• Friedmann equations are two independent ODE

• Where 𝑏 𝜏 𝑑𝜏 = 𝑑𝑡 is the cosmological time



• TDiff terms in cosmological time
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ሶ𝑔

𝑔

10



• TDiff terms in cosmological time

• We end with a two ODE system of 𝐻 and 𝐻𝑔 =
ሶ𝑔

𝑔

• Note we need 2 additional parameters, 𝐻0, 𝐻𝑔0, Ω𝑀, Ω𝑅 , ΩΛ  vs. 

𝐻0, Ω𝑀, Ω𝑅  in GR.
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• Expression for scalar graviton energy

• This let us to derive an effective equation of state for ℒ5 

• No phantom or cosmological constant ρ𝑆 = 𝑐𝑜𝑛𝑠𝑡. behaviour
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• Then, the dynamics are related to the ODE system



12

• Then, the dynamics are related to the ODE system

• This is equivalent to the ordinary Friedmann equation with an 
additional fluid with a variable EoS



Explicit solutions

• We first solve simple cases, with constant 𝝎𝑺
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Explicit solutions

• We first solve simple cases, with constant 𝝎𝑺

• Substituing in ሶ𝐻, ሶ𝐻𝑔 give us two algebraic equations for H, 𝐻𝑔, ρ𝑆 
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• ΛCDM solution. ρ𝑆 = 𝐻𝑔 = 0, we recover the standard cosmological 

evolution, with scalar mode unexcited
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• ΛCDM solution. ρ𝑆 = 𝐻𝑔 = 0, we recover the standard cosmological 

evolution, with scalar mode unexcited

• Stiff fluid solution. ω𝑆 = 1, scalar mode behaves as a stiff matter 

fluid, with 𝐻𝑔 = ±
24

𝑎5

8π𝐺

3
ρ𝑆
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• Tracker solution. 𝐻𝑔 + 6 𝜔𝑆 + 1 𝐻 = 0. Then ρ and ρ𝑆 fulfills
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• Tracker solution. 𝐻𝑔 + 6 𝜔𝑆 + 1 𝐻 = 0. Then ρ and ρ𝑆 fulfills

• This implies ω𝑆 = ω If ρ and ρ𝑆 are both positive, 𝑎5 <
1

3(𝜔𝑆+1)
 

• Vacuum solution. Tracker sol. with ρ = 0, and 𝜔𝑆 = 𝝎𝑺
∞ ≡ −1 + 3𝑎5

−1. 
Large 𝑎5 leads to DE
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Approximate solutions

• Equation of evolution for 𝜔𝑆 is integrable in some limits

• Subdominant case. |𝜌𝑆| ≪ 𝜌, then
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Approximate solutions

• Equation of evolution for 𝜔𝑆 is integrable in some limits

• Subdominant case. |𝜌𝑆| ≪ 𝜌, then

• Transition from early stiff solution to late cosmological constant
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• Dominant case. 𝜌𝑆 ≫ 𝜌, the equation reads
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• Dominant case. 𝜌𝑆 ≫ 𝜌, the equation reads

• For |𝜔𝑆| < 1 

• 𝑎5 >
1

6
 → Transition between stiff solution and vacuum solution

• 𝑎5 <
1

6
 → Transition between two stiff solutions
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• Dominant case. 𝜌𝑆 ≫ 𝜌, the equation reads

• For |𝜔𝑆| < 1 

• 𝑎5 >
1

6
 → Transition between stiff solution and vacuum solution

• 𝑎5 <
1

6
 → Transition between two stiff solutions

• For |𝜔𝑆| > 1, we expect a contraction epoch (𝐻 < 0)
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• Dominant case. 𝜌𝑆 ≫ 𝜌 . Streamline plot of ሶ𝐻, ሶ𝐻𝑔

                           𝑎5 >
1

6
                    𝑎5 <

1

6
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• Dominant case. 𝜌𝑆 ≫ 𝜌, |𝜔𝑆| < 1. 

 Example for 𝑎5 >
1

6
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General solutions
• Equations for ሶ𝐻, ሶ𝐻𝑔 form an autonomous system of 2 + n equations, where n: 

number of perfect fluids 𝜌𝑖
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General solutions
• Equations for ሶ𝐻, ሶ𝐻𝑔 form an autonomous system of 2 + n equations, where n: 

number of perfect fluids 𝜌𝑖

• Solutions asymptotically interpolate between stiff, vacuum and tracker 
solutions. 

• If 𝝎𝑺
∞ < 𝝎𝒊, vacuum solution at future, else tracker
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• Tracker solution. ℒ5 + matter (𝜔 = 0). 𝑎5 <
1

6
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Conclusions

• Most general metric action up to two metric derivatives, which is stable and 
compatible with PPN tests.
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Conclusions

• Most general metric action up to two metric derivatives, which is stable and 
compatible with PPN tests.

• The theory propagates an additional scalar graviton and modifies the cosmological 
evolution

• ΛCDM is a particular solution but new solutions are also possible

• Small Diff breaking (𝜌𝑆) freezes as a cosmological constant at late times

• Solutions with large 𝑎5 assymptotically behaves as dark energy. Small 𝑎5 lead to 
tracker solutions
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